Thermochimica Acta, 92 (1985) 425-426 Elsevier Science Publishers B.V., Amsterdam

THERMOELECTROMETRY AS A METHOD FOR REACTIVITY ESTIMATION OF SOLID POWDERY MATERIALS

Zdeněk Šolc^x. Miroslav Trojan, Milan Kuchler, Institute of Chemical. Technology, Pardubice, Czechoslovakia

ABSTRACT

A ceramic spinel pigment of Zn-Fe-Cr type has been used for demonstration of application of thermoelectrometry to evaluation of suitability of the Fe2O3 raw material. Conductometrical thermal analysis very sensitively indicates the beginning of the reaction between the oridea; the temperatures found by this method for the beginning of the reaction FepOg+ZnO are lower than those found by MIA by as much as 1200C. The meaaurementa of admittance and of phase angle or dielectric loss factor tg 6 in dependence on frequency of the measuring voltage and on temperature enable - if a suitable equivalent circuit is chosen - interpretation of surface changes of the powdery material during its heating or during the course of its reaction with another substance.

INTRODUCTION

Reproducible preparation of pigments (especially the hightemperature ones) is difficult because of sensitivity of their final properties to negligible changes in the starting materials usually oxides. Refs.1.2 show the dependence between properties (particularly the colour hue) of pigments of the spine1 type - in particular the pigment $\text{Zn}/\text{Fe}_{1+r}\text{Cr}_{1-r}/0$ ₄ - and reactivity of the starting oxides. In our country production of these pigments starts from Fe203 made by Bayer, and it would be interesting **to** replace this raw material by cheaper Czecheslovak oxide. Therefore, considerable attention was paid to comparison and evaluation of reactivity of inland Fe_2O_3 (ref.3). This reactivity of Fe_2O_3 towards ZnO represents a complex picture of properties of the oxide as a raw material, and it is given by a number of factors, especially the situation in the crystal lattice and its disturbances.

During the reaction course a product layer (the spine1 compound) is formed at the interphase surface; kinetics of this reaction is controlled either by diffusion of ions or - in the case of powdery oxides - by diffusion of Zn^{++} ions and electrons (ref.4). The labelling experiments carried out with compressed tablets of ZnO and $Fe₂O₃$ showed that the product is formed at the side of $Fe₂O₃$. Ref.5 points at a possibility of partial transfer of ZnO in vapours. These facts indicate that the reaction course can make **Proceedings of ICTA 85, Bratislava**

itself felt just by electric and dielectric properties.

MEASURING METHODS

The measurements were carried out with the following types of $Fe₂O₃$: Bayferox 130 B (Bayer, West Germany); Thermal Red TP 303 (Prerov) with no surface modifications, finely ground; Thermal Red TD 202 (Přerov), surface-modified, dispersed;Precipitated Red Fep*ren* DR 63 (Prerov); Oxide for Hard Yerrites (Further denoted as PT) (Hrušov); Ferric Yellow Fepren Y (Přerov); Ferric Black Fepren B (Přerov); the other substances used: ZnO (Košeca) and Cr_2O_3 (Bayer).

The calcination mixtures of Fe_2O_3+Zn0 were prepared in molar ratio of I:1 by wet grinding in a ball mill (20 h). For the **measu**rements the samples of ferric oxides or their reaction mixtures with ZnO were compressed into tablets. For the measurements of electric conductivity the pastille ($\cancel{6}$ 12 mm) was placed between gilden platinum electrodes in an oven whose heating or cooling was linear at a rate of 5 K min⁻¹. The electric resistance, impedance, was measured either by means of a RLC bridge Tesla BM 509 (frequency $f = 1$ kHz) or by means of an indicator of impedance Z or phase angle $\mathcal Y$ Tesla BM 507 (f in the range from 5 Hz to 500 kHz). The oven was heated by direct current. The results of the measurements were in the form of the dependence of conductance σ or admittance (in log scale) on l/T.

The dielectric properties were measured either non-isothermally with the Z and φ indicator (BM 507) or isothermally with the Q meter Tesla BM 560. In the latter case the pastilles $(\not\!$ 32 mm) were clamped between gilden electrodes in a metal chamber temperated at 50° C. The measurement is described in more detail in ref.2.

RESULTS AND DISCUSSION

 $Refs.2,3$ show that the temperature of the beginning of reaction of ZnO with various types of Fe_2O_3 (determined by the method of conductometric thermal analysis) correlates best with the changes in colour hues of the resulting pigments. Particularly, comparison of this method with the classic differential thermal analysis (DTA) confirms its much higher sensitivity, because the temperatures of the reaction start are lower by as much as 120° C than those found by DTA. Eigure 1 gives the typical shape of the dependence log \mathfrak{S}' vs. 1/T. With the ZnO+Fe₂O3 systems, a slight increase in σ is observed from t_{n} temperature followed by formation of a "peak". Slopes of the linear sections can be used for determination of activation energy of conductivity (ϵ). With ZnO+Cr₂O₃, on the contrary, the conductivity is slightly decreased from t_p . The presumption that the t_p temperature can be considered the reaction start is supported by chemical analyses of the conversion degree α and by the fact that e.g. the ε' energy lies between the values ε (for the starting mixture) and $\mathcal{E}_{\mathfrak{P}}$ (for the product). Sensitivity of the method would be documented by the results given in poster. During the grinding process the reactivity of the raw materials slightly increases. When using prefired ferric yellow FeOOH as **a** reaction component the reactivity with the temperature of prefiring decreases.

The measurements of complex admittance Y in dependence on temperature (whose increase was programmed) have similar character as σ (T). Figure 2 shows the dependence of phase angle $\mathscr Y$ or dielectric loss factor $tg\delta$ for the system $Fe_2O_3+ZnO_6$ Fig.3 represents the same dependence for pure $Fe₂O₃$. The curves obtained can be interpreted by means of a suitabiy chosen electric equivalent circuit, the best seemed— \Box \Box \Box \Box \Box \Box \Box \Box , \Box The tgd function shows a minimum for scheme (B), the values of its ω_{min} and $(\text{tg}\delta)_{\text{min}}$ are determined by the given formulas, the symbol $\frac{1}{2}$ being valid for R> 5R'. Figure 2 shows a distinct shift of the minimum tg δ , which means a decrease in the C,R,R' values. This phenomenon can be explained by formation of a defective and, hence, more conducting layer of the product Zn-ferrite on $Fe₂O₃$ particles. Figure 3 (pure Fe₂O₃) shows a shift of the minimum tg δ towards lower ω with increasing temperature and, moreover, a lowering of $(tg\delta)_{min}$. These two facts - with respect to the relationsmean an *increase in* C,R,R' and simultaneous decrease in R'JR. A likely explanation can be seen in decreased concentration of the defects during temperation of the oxide.

The measurements carried out show that the equivalent scheme (B) is suitable, the resistance R' being interpreted as resistance of the mass of the particle, the values R and C being connected with properties of the surface layer and/or of the remaining interlayer cavities.

REFERENCES

1 Z.Šolc, M. Trojan, Problems in Using Ferric Oxide in Ceramic spinel Pigments. 13-15.September 1983, Trojanovice

 $\frac{2}{3}$

Z. Šolc, M. Trojan, M. Pokorný, Silikáty (1985), in press
Z. Šolc, M. Trojan, H. Prokopová, Chem. průmysl, in press
Ju. D. Tretjakov, Tverdofaznyje reakcii, Moskva, Izd. Chimija, 1978
J. F. Duncan, D. J. Stewart, Trans. Fa 4 5

Fig.1. Temperature dependence of Fig.2. Frequence dependence of
the conductivity of, reacted frac- the loss factor tgo, measured by
tion $\alpha = 0.05(a)$, 0.08(b), 0.37(c), Q-meter, $\alpha = 0.01(1)$, 0.06(2), 0.15(3),
t_p=632°C,

Fig. 3. Frequence and temperature dependence of $tg\delta$, ferric oxide TP 303. The temperature of heating (or preheating) of the oxide is 500(1), 4000(2), 6000C(3).